Homologs of genes associated with programmed cell death in animal cells are differentially expressed during senescence of Ipomoea nil petals.

نویسندگان

  • Tetsuya Yamada
  • Kazuo Ichimura
  • Motoki Kanekatsu
  • Wouter G van Doorn
چکیده

In senescent petals of Ipomoea nil, we investigated the expression of genes showing homology to genes involved in animal programmed cell death (PCD). Three encoded proteins were homologous to apoptotic proteins in animals: Bax inhibitor-1 (BI-1), a vacuolar processing enzyme (VPE; homologous to caspases) and a monodehydroascorbate reductase [MDAR; homologous to apoptosis-inducing factor (AIF)]. AIFs harbor an oxidoreductase domain and an apoptotic domain. MDARs exhibit homology to the AIF oxidoreductase domain, not to the apoptotic domain. The three other genes studied relate to autophagy. They encode homologs to vacuolar protein sorting 34 (VPS34) and to the Arabidopsis autophagy-related proteins 4b and 8a (ATG4b and ATG8a). The transcript abundance of MDAR decreased continuously, whereas that of the other genes studies exhibited a transient increase, except ATG4b whose abundance stayed high after an increase. Treatment with ethylene advanced the time to visible petal senescence, and hastened the changes in expression of each of the genes studied. In order to assess the role of VPS34 in petal senescence, we studied the effect of its inhibitor 3-methyladenine (3-MA). 3-MA reduced the time to visible petal senescence, and also accelerated the time to DNA degradation. Remarkably, 3-MA increased the time to nuclear fragmentation, indicating that the time to visible petal senescence was independent of nuclear fragmentation. The data on 3-MA might suggest the idea that autophagy is not a cause of PCD, but part of the remobilization process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

InPSR26, a putative membrane protein, regulates programmed cell death during petal senescence in Japanese morning glory.

The onset and progression of petal senescence, which is a type of programmed cell death (PCD), are highly regulated. Genes showing changes in expression during petal senescence in Japanese morning glory (Ipomoea nil) were isolated and examined to elucidate their function in PCD. We show here that a putative membrane protein, InPSR26, regulates progression of PCD during petal senescence in Japan...

متن کامل

Programmed Cell Death Progresses Differentially in Epidermal and Mesophyll Cells of Lily Petals

In the petals of some species of flowers, programmed cell death (PCD) begins earlier in mesophyll cells than in epidermal cells. However, PCD progression in each cell type has not been characterized in detail. We separately constructed a time course of biochemical signs and expression patterns of PCD-associated genes in epidermal and mesophyll cells in Lilium cv. Yelloween petals. Before visibl...

متن کامل

Carotenoid composition and carotenogenic gene expression during Ipomoea petal development

Japanese morning glory (Ipomoea nil) is a representative plant lacking a yellow-flowered cultivar, although a few wild Ipomoea species contain carotenoids in their petals such as Ipomoea sp. (yellow petals) and I. obscura (pale-yellow petals). In the present study, carotenoid composition and the expression patterns of carotenogenic genes during petal development were compared among I. nil, I. o...

متن کامل

Mineral nutrient remobilization during corolla senescence in ethylene-sensitive and -insensitive flowers

The flower has a finite lifespan that is controlled largely by its role in sexual reproduction. Once the flower has been pollinated or is no longer receptive to pollination, the petals are programmed to senesce. A majority of the genes that are up-regulated during petal senescence, in both ethylene-sensitive and -insensitive flowers, encode proteins involved in the degradation of nucleic acids,...

متن کامل

O-29: Differences in The Transcriptional Profiles of Human Cumulus Cells Isolated From MI and MII Oocytes of Patients with Polycystic Ovary Syndrome

Background: Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in women. The abnormalities of endocrine and intra-ovarian paracrine interactions may change the microenvironment for oocyte development during the folliculogenesis process and reduce the developmental competence of oocytes in PCOS patients who are suffering from anovulatory infertility and pregnancy loss....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 50 3  شماره 

صفحات  -

تاریخ انتشار 2009